

Analysis of milk microbial profiles using 16s rRNA gene sequencing in milk somatic cells and fat

Juan F. Medrano

Anna Cuzco* Alma Islas-Trejo Armand Sanchez* Olga Francino*

* Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Spain

WCGALP, Auckland, NZ Feb 13, 2018

MICROBIOTA

Collection of microorganisms in a defined environment, microbial communities

Marker genes

16S rRNA gene (bacteria) ITS1, ITS2 (fungi)

MICROBIOME

Collection of microorganisms together with their genes in a defined environment

Metagenomics

Whiteside et al., 2015. Nat Rev. Urol.

Approach used to examined the Microbiota of milk

- Examined bacterial diversity in two milk tissues: somatic cells and fat.
- Collected milk samples with cannula and nocannula to harvest endogenous milk vs milk exposed to the external environment.
 - Exp 1. Examined longitudinal composition of bacterial populations by sampling the same cow at 15, 90 and 120 dim. (7 cows)
 - Exp 2. Compared healthy vs mastitic quarters from the same cow. (3 cows)

Milk samples Bacterial DNA extraction

Amplifying V1-V2 of 16S rRNA

Sequencing

Bioinformatics analysis

2nd lactation Holstein cows UCDavis

Centrifugation 1000g, 10 min, 4°C

50 ml of fresh milk
3hr after milking
With and w/o cannula.

Fat layer
Stored at

Pellet

-70C

Somatic cells (epithelial cells, leukocytes)

Lysis buffer 55C

Milk samples

Bacterial DNA extraction

Amplifying V1-V2 of 16S rRNA

Sequencing

Bioinformati cs analysis

Bacterial DNA from the **fat fraction** was extracted using **Phenol/Chloroform**

Bacterial DNA from somatic cells was extracted using the PowerFood® Microbial DNA isolation kit.

Amplification of V1-V2 regions of 16S rRNA gene

•Highly conserved gene with 9 hypervariable regions for taxonomic classification.

•40-barcoded samples were pooled to run two 318[™] Chips in an **Ion Torrent PGM** sequencing platform.

Milk samples

Bacterial DNA extraction

Amplifying V1-V2 of 16S rRNA

Sequencing

Bioinformatic analysis

QC of the reads and filtering >300bp

Pick OTUs (at 97% of identity) and representative sequences Assign
Taxonomy
(RDP
classifier +
Greengene
s v13.8)

Align sequences (PYNAST) to build phylogenetic tree Results:
Taxa
summary,
alpha and
beta
diversity

Milk samples Bacterial Amplifying V1-V2 of extraction 16S rRNA Sequencing Bioinformatic analysis

Alpha diversity:

"How many kinds of microbes are in a community?"

- Richness: no of species per sample
- Evenness (Shannon index): n^o of species per sample considering their relative abundances

Beta diversity:

"How do the communities differ from each other?"

- **Unweighted UniFrac:** phylogeny and no of species.
- Weighted UniFrac: phylogeny, no of species and relative abundances.

Rarefaction plots

PCoA plots

Results: Microbiota in somatic cells vs fat

Somatic cells and fat fractions presented a very different microbiota structure.

Somatic cells microbiota was more diverse than milk fat microbiota

Samples obtained with no cannula presented higher diversity values, despite no statistically significant differences

Results: Microbiota in somatic cells vs fat (cannula)

Fat Homogeneous composition

Janthinobacterium, Acinetobacter and Pseudomonas

Somatic cells

Higher diversity and variability

Corynebacterium, Ruminococcaceae, Intrasporangiaceae, Acinetobacter, Lactococcus, Arthobacter, 5-7N15, etc.

Results: Microbiota through days in lactation (no cannula)

Bovine milk microbiota through days in lactation

Taxonomic differences through lactation were more abundant in Fat cells:

-15 DIM cows:

overrepresentation of Janthinobacterium, Pseudomonas, Acinetobacter

-120 DIM cows:

overrepresentation of Arthrobacter, Janibacter, 5-7N15

In Somatic cells,

Acinetobacter was also
overrepresented in 15 DIM
cows.

Results: Microbiota in healthy and mastitic fat samples

AKP

Healthy quarters - homogeneous taxonomy similar to healthy dim samples (Janthinobacterium, Acinetobacter and Pseudomonas)

Genera detected on mastitic quarters:

Lactococcus, Propionibacterium, Streptococcus, Staphylococcus

Results: Microbiota in healthy and mastitic fat samples

Significant differences between healthy and mastitis were detected on fat: **Staphylococcus** were overrepresented in all mastitic quarters

Conclusions

- We developed a sampling and analytical methodology to assess milk microbiota in somatic cells and fat tissues.
- ➤ Milk somatic cells and fat are very distinct tissues in microbial affinity and are essential tissues to study milk microbial diversity.
- ➤ Milk collected from the endogenous environment of the udder, using a cannula, demonstrates a large microbial diversity in the gland and it is not sterile.
- Somatic cells presented a more diverse microbiota, fat samples were more homogeneous, but gave more insights in detecting significant differences between biological groups (cannula vs no cannula, mastitis vs healthy).
- Milk fat from bovine mastitis presented a diverse bacterial profile, with high abundances of some previously linked or isolated taxa to mastitis.

